
ANL-21/55

Scalable Interpolation on GPUs for Thermal Fluids
Applications

Mathematics and Computer Science

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at
9700 South Cass Avenue, Lemont, Illinois 60439. For information about Argonne and its
pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a
growing number of pre-1991 documents are available free at OSTI.GOV
(http://www.osti.gov/), a service of the US Dept. of Energy’s Office of Scientific and
Technical Information.

Reports not in digital format may be purchased by the public from the
National Technical Information Service (NTIS):

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312
www.ntis.gov
Phone: (800) 553-NTIS (6847) or (703) 605-6000
Fax: (703) 605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the
Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of
document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,
Argonne National Laboratory, or UChicago Argonne, LLC.

 ANL-21/55

Scalable Interpolation on GPUs for Thermal Fluids Applications

prepared by

Neil Lindquist1,2, Paul Fischer1,3,4, Misun Min1

1 Mathematics and Computer Science Division, Argonne National Laboratory
2 Department of Computer Science, University of Tennessee, Knoxville
3 Department of Computer Science, University of Illinois, Urbana Champaign
4 Department of Mechanical Science & Engineering, University of Illinois, Urbana Champaign

September 27, 2019

Contents

Executive Summary . ii

1 Introduction . 1

2 Formulation . 2

3 Interpolation Algorithm . 3

3.1 findpts . 4

3.2 findpts eval . 5

3.3 Lagrange Cardinal Polynomials . 5

4 Applications: Overlapping meshes . 7

5 Particle Tracking . 8

5.1 Particle Migration . 8

5.2 Performance . 8

Acknowledgments . 11

References . 12

i

Executive Summary

The need for efficient interpolation arises in many use cases for spectral element simulations. Towards
this end, we present a fast and robust GPU-enable interpolation utility for NekRS, a spectral-element,
Navier-Stokes solver. This utility is based on the findpts and findpts eval routines from the
gslib library. To demonstrate the functionality, we added support for particle tracking. The GPU
implementation of the interpolation allows for tracking 100 times more particles for the same
computational cost.

ii

1 Introduction

Most computational fluid dynamics (CFD) codes are based on Eulerian representations, where the
equations are discretized in a fixed frame of reference through which the fluid flows. A common
aspect of this approach is that the solution is typically represented on a fixed grid, or mesh,
comprising nodes where solution values are represented. Differential operators are approximated by
relationships between neighboring nodal values. These approaches can be quite efficient both for
forward operator evaluation (e.g., differentiation) and for system solution (e.g, solving a Poisson
problem, which is usually done iteratively for 3D problems). Post-processing quantities, such
as drag, heat-transfer coefficients, and turbulence statistics, are also readily accessible with this
Eulerian-based representation as one can use the mesh-based representation to evaluate gradients,
boundary integrals, and volume integrals.

There are many instances, however, where there is a distinct need to evaluate off grid quantities.
Applications include overset grids [1, 2, 3], particle tracking (Sec. 5), and numerous solution
interrogation techniques such as profile plotting and 2D slices through the domain for visualization
or spectral analysis of turbulent flows. Such applications require general, unstructured, interpolation
from a predefined set of mesh points, xi, i = 1, . . . , n to an arbitrary array of values, x̃∗ =
[x∗1 x∗2 . . . x

∗
m]T , where x∗j = [x∗j y

∗
j z
∗
j]. In the case of nodal bases, we have that, for any scalar

solution field u(x), u(xi) = ui. Evaluation of u(x∗j) requires interpolation from “nearby” points,
xi, that are in the neighborhood of x∗j . The basic challenge for unstructured CFD discretizations
is to be able to quickly identify the neighborhood of x∗j , including the processor to which this
neighborhood (in the Eulerian description) is assigned, and to rapidly evaluate the interpolant.

We describe herein a multi-GPU-based interpolation scheme for spectral elements that has
been developed in the context of open-source code, NekRS [4]. We address GPU performance
issues, parallel scalability, and relative per-point costs of general interpolation versus Navier-Stokes
time advancement. We illustrate the utility of this routine for an overset grid application and
for Lagrangian particle tracking. A common question in this context is, If one has an n-point
Navier-Stokes solution, how much more expensive is it to also advect n particles? We address this
question in Section 5.

Our focus here is on the general interpolation problem for parallel implementations of the
spectral element method (SEM), with a particular emphasis on GPU-based implementations. The
SEM [5] is essentially a high-order finite element method restricted to (curvilinear) hexahedral
elements within a domain Ω comprising the union of nonoverlapping elements, Ωe, e = 1, . . . , E. In
d space dimensions, each element is the image of the reference element, Ω̂ := [−1, 1]d, given by (in
the case d = 3),

xe(r) =

N∑
k=0

N∑
j=0

N∑
i=0

li(r)lj(s)lk(t)xe
ijk. (1)

Here, the li(r) denote Nth-order Lagrange cardinal polynomials satisfying li(ξj) = δij on the N + 1
Gauss-Lobatto-Legendre (GLL) quadrature points, ξj ∈ [−1, 1]. The coefficients xe

ijk denote the
mapping of the tensor-product GLL triplets (ξi, ξj , ξk) to Ωe. Solution and data fields have a similar

1

description,

u(x)|Ωe = ue(r) =
N∑
k=0

N∑
j=0

N∑
i=0

li(r)lj(s)lk(t)ueijk, (2)

such that u(x) is defined by the relationships (1)–(2).

In a distributed-memory parallel computing context there is another important index, namely,
the MPI rank p to which a given subset of the elements is assigned. Because of the processor-
local private-memory model, elements are implicitly indexed by the pair (p, e) for MPI ranks
p = 0, . . . , P − 1, and local element numbers e = 1, . . . , Ep. In order to evaluate (2) at x∗ one must
therefore first identify the full set of coordinates, (p∗, e∗, r∗), such that on rank p,

xe(r∗) = x∗, (3)

with r∗ := [r∗ s∗ t∗]. We label this process, findpts(), after the name of the utility that solves (3), as
described below. With (p∗, e∗, r∗) thus determined, one can solve the interpolation problem,

u(x∗) = ue(r∗), (4)

for any scalar field u(x). We refer to (4) as findpts eval() and note that it is equally well defined for
vector fields, which better amortize the overhead of the initial findpts() query.

The remainder of this report is organized as follows. We begin with a contextual overview of the
SEM and NekRS in the next section to provide a performance metric for our interpolation routine.
Section 3 describes the algorithms and implementation of our interpolation routines. Finally, in
Sections 4 and 5, we demonstrate the usage and performance of our routines in two applications,
overset grids and particle tracking, respectively.

2 Formulation

Our focus is on the incompressible Navier-Stokes equations (NSE) for velocity (u) and pressure (p),

∂u

∂t
+ u · ∇u=

1

Re
∇2u−∇p, ∇ · u = 0, (5)

where Re = UL/ν � 1 is the Reynolds number based on flow speed U , length scale L, and viscosity
ν. From a computational standpoint, the long-range coupling of the incompressibility constraint,
∇ · u = 0, makes the pressure substep intrinsically communication intensive and a major focus of
our effort as it consumes 60-80% of the run time. This system is typically solved with conjugate
gradient or GMRES iteration using some type of p-multigrid for preconditioning [6, 7].

The use of iterative solvers obviates the need for matrix construction as one only requires
matrix-vector products. The form of the SEM bases (2) allows all operator evaluations to be
expressed as fast tensor contractions, which can be implemented as BLAS3 operations1 in only
O(nN) work and O(n) memory references, where n ≈ EN3 is the number of gridpoints for the

1For example, with D̂il := dhl
dr
|ξi , the first derivative takes the form ur,ijk =

∑
l D̂iluljk, which is readily

implemented as an Np ×Np matrix times an Np ×N2
p matrix, with Np = N + 1.

2

velocity and pressure [8, 9]. This low complexity is in sharp contrast to the O(nN3) work and
storage complexity that would be realized if the system matrices were explicitly formed. Moreover,
the C0 continuity requirements of the nodal bases implies that the SEM is communication minimal:
data exchanges have unit-depth stencils, independent of N . Finally, local i-j-k indexing avoids
much of the indirect addressing associated with fully unstructured approaches, such that high-order
SEM implementations can realize significant throughput (e.g., 1.2 FP64 TFLOPS for application of
a Poisson operator with N = 7 on a single NVIDIA V100 [10]).

NekRS is a relatively new GPU-oriented version of the open source SEM code, Nek5000. It’s
GPU kernels are written in the open concurrent compute abstraction (OCCA) for cross-platform
portability [11]. Many of the kernels originate from the high-performance libParanumal library of
[12], which is a fast GPU-oriented library for high-order methods applied to a variety of PDEs.
With NekRS it is possible to advance a 51-billion-point NSE solution in < 0.25 seconds per step on
27648 V100s of OLCF’s Summit for a complex pebble-bed reactor geometry similar to that shown
in Fig. 1, save that it has 352K pebbles.

We contrast the relatively low O(nN) and O(n) complexities of the SEM operator evaluation
with that required for general interpolation given by (2). We note that li(r

∗), i = 0, . . . , N can be
evaluated in O(N) time by exploiting common factors in li and lj for all (i, j) pairs. So, once {li(r∗)},
{li(s∗)}, and {li(t∗)} are known for i = 0, . . . , N , there are 2(N+1)3 +2(N+1)2 +2(N+1) = O(N3)
operations required to successively condense out the i, then j, then k index in ueijk. A critical

observation is that, if one has n points, x∗j , then the total cost for findpts eval() is O(nN3) = O(EN6),
which is significantly larger (modulo constants) than the SEM time-advancement of the NSE.
Moreover, findpts() is generally much more expensive than findpts eval(), so the constants for
interpolation are not small if one has moving interrogation points, as is the case for Lagrangian
particle tracking. It is therefore imperative to have a fast interpolation routine if one wants to
evaluate the solution at a relatively large number of interpolation points.

We point out that our new GPU-based findpts() utilities derive from CPU-oriented C-code in
the gslib library written originally by James Lottes [13]. gslib is a lightweight C communication
package that readily links with any Fortran, C, or C++ code. Its interpolation routines grew out of
a need to support data interrogation and Lagrangian particle tracking on P = 104–106 processors.
High-fidelity interpolation for highly curved elements, like the ones supported by the SEM, is quite
challenging. Thus, findpts was designed with the principles of robustness (i.e., it should never fail)
and speed (i.e., it should be fast). However, gslib was developed before the rise of GPU-accelerated
supercomputers. So, it’s performance is significantly limited by its inability to access most of
the computational power of the many current and upcoming heterogeneous supercomputers [14].
Furthermore, using the original C-code would require copying the field data ({ueijk}) to be copied
to the host, further reducing performance.

3 Interpolation Algorithm

The interpolation is composed of two stages. First, the findpts routine takes a point in physical
space and computes the corresponding element and the coordinates in the reference element. Second,
the findpts eval routine takes this position information and interpolations a field at each of those
points using (2).

3

Algorithm 1 findpts local

1: procedure ogs findpts local(code, el, r, dist2, x, npt)
2: for i from 0 to npt do
3: elements← hashtable lookup(i)
4: for element ∈ elements do
5: if x ∈ bounding box(element) then
6: for j = 1, 2, . . . , 50 do
7: Compute residual ρj , Jacobian J , Hessian H
8: if ‖ρj‖ < tol then
9: exit loop

10: else if ρj > ρj−1 then
11: Reduce trust region t
12: r ← r − u
13: else
14: Compute u to minimize ‖ρj − Ju‖2

st |u| ≤ t and |r + u| ≤ 1
15: r ← r + u
16: end if
17: end for
18: end if
19: end for
20: end for
21: end procedure

3.1 findpts

The findpts routine first attempts to find the points among its local elements through the internal
routine findpts local. Then, candidate processes are computed for all unfound points. Those processes
each attempt to find the point among its local element, again using findpts local. The results are
returned to each originating process where the best result is kept.

The findpts local routine works in a similar manner. For each point, a set of candidate elements
are computed. A reference coordinate is found for each candidate element using the findpts el
routine. The most accurate coordinate is kept for each point.

Recall that the mapping from the reference element, Ω̂ = [−1, 1]3, to each element, Ωe, is
defined by (2). So, the findpts el routine uses Newton iterations to find the coordinates in Ω̂ that
map to the given point. The distance to each GLL point is computed, with the closest being used
as the initial guess. During the Newton solve, each step is restricted to a trust region and the new
solution is restricted to Ω̂. The trust region starts as a cube of length 2. If any step increases the
residual, the trust region is halved in each dimension and the previous solution is restored.

Hash tables are used by findpts and findpts local to compute candidate processes, and elements,
respectively. For each table, a uniform, axis-aligned grid is placed over the mesh (either global or
process-local). The global hash table records for each grid cell the processes which contain elements
overlapping that cell, whereas the local hash tables record for each grid cell the elements overlapping
that cell. To prevent points from falling between elements, due to rouding errors, each element is
slightly expanded when testing overlap. The uniformity of the grid simplifies the computation of
candidate processes or elements. During lookup, the local hash table further filters elements by
comparing the point to the expanded element’s axis-aligned bounding box.

4

Algorithm 2 findpts local eval

1: procedure ogs findpts local eval(out, el, r, npt, in)
2: for i from 0 to npt do
3: for j = 0, . . . , N do
4: wtr[j] = cardinal eval(0, r[i][0], j)
5: wts[j] = cardinal eval(0, r[i][1], j)
6: wtt[j] = cardinal eval(0, r[i][2], j)
7: end for
8: for j = 0, . . . , N do

9: s[j]← wtr[j]
N∑
k=0

wts[k]
N∑̀
=0

wtt[`] · in[el, j, k, `]

10: end for

11: out[i]←
N∑
j=0

s[j]

12: end for
13: end procedure

We implemented findpts local and findpts el in OCCA as a single kernel. Each point is given
a seperate outer iteration (e.g. one thread-block in CUDA) in order to reduce branch divergence
between the inner iterations, important for GPU backends. This differs from gslib which processes
all points for a candidate element together. Our implementation is otherwise similar to the
implementations in gslib. The inner iterations (e.g. threads in CUDA) are used to take advantage
of parallelism such as computation of cardinal polynomials and tensor products. Algorithm 1 shows
an outline of our formulation.

3.2 findpts eval

The findpts eval routine consists of an all-to-all exchange based on the processes of the elements
found by findpts, a tensor product for each point using findpts local eval, then returning the results
with another all-to-all exchange. Similar to findpts, we implemented this in OCCA using a single
kernel to handle the entire local evaluation. Furthermore, we assign one outer iteration (e.g. one
thread-block in CUDA) per interpolation point. The inner iterations (e.g. threads in CUDA)
parallelized the computation of the cardinal polynomials and the tensor product. Algorithm 2 shows
our formulation.

3.3 Lagrange Cardinal Polynomials

Both of these routines must evaluate the Lagrange cardinal polynomials, and possibly it’s derivatives,
at given points. This behavior is encapsulated in cardinal eval. Our implementation is inspired
by the O‘ (n) serial algorithms, modified to use multiple GPU threads. Is is written in a SIMD
manner where each inner iteration computes the value of a single cardinal polynomial. Furthermore,

5

Algorithm 3 cardinal eval

1: procedure cardinal eval(nderiv, x, j)
2: if i < n then
3: z ← lookup quadrature points
4: w ← lookup weights
5: if nderiv = 2 then
6: u0 = 1, u1 = 0, u2 = 0
7: for k = 0, . . . , N do
8: if i 6= j then
9: dj = 2(x− zk)

10: u2 ← u2 · dk + u1

11: u1 ← u1 · dk + u0

12: u0 ← u0 · dk
13: end if
14: end for
15: p0[j] = w[j] · u0

16: p1[j] = 2 · w[j] · u1

17: p2[j] = 8 · w[j] · u2

18: else if nderiv = 1 then
19: . . .
20: else if nderiv = 0 then
21: . . .
22: end if
23: end if
24: end procedure

we were able to significantly simplify the evaluation by noting that for the ith cardinal polynomial,

dj = x− zj

u
(j)
0 =

j∏
q=0
q 6=i

dq = dju
(j−1)
0

u
(j)
1 =

j∑
p=0
p 6=i

j∏
q=0
q 6=i,p

dq = dju
(j−1)
1 + u

(j−1)
0

u
(j)
2 =

j∑
o=0
o 6=i

j∑
p=0
p 6=i,o

j∏
q=0

q 6=i,o,p

dq = dju
(j−1)
2 + 2u

(j−1)
1 .

Then, the cardinal polynomial and its first two derivatives are equal to w0u
(N)
0 , w1u

(N)
1 , and w2u

(N)
2 ,

respectively, where w0, w1, w2 are normalization constants for that polynomial. This allows the
polynomial and its derivatives to be computed in O(N) time and constant memory. Furthermore, it
helps the performance of GPU backends by ensuring each thread accesses the same values from
memory and limiting thread divergence. Algorithm 3 shows our formulation for second derivative
evaluation; lower derivative evaluations just remove the unneeded terms.

6

Algorithm 4 Overlapping Meshes Outline
1: for timestep do
2: if mesh is moving then
3: Find new boundary interpolation points
4: end if
5: Interpolate overlapped boundary values
6: Solve fluid equations
7: end for

Figure 1: 3D NekRS neknek simulation with two meshes, a rotating cylinder and square annulus
shown with (left) and without (right) the spectral element grids. No sign of mesh imprinting is
visible in the figure on the right.

4 Applications: Overlapping meshes

Automatic generation of meshes with hex-elements can be difficult for certain complex geometries.
One approach to simplifying the meshing process is to use a Schwarz overlapping method to divide
the domain into multiple, easier to mesh regions [3]. Furthermore, dividing the domain into multiple
meshes can simplify simulations that have moving components by meshing individual parts that
only move relative to the other subdomains. Finally, meshes with varying levels of accuracy can be
simplified by using overlapping meshes rather than a single mesh.

In the Schwarz overlapping method, the solution in each subdomain can be advanced indepen-
dently, with boundary conditions in the overlapping regions interpolated from the solution in the
overlapping neighbors at the previous time step. This approach provides O(∆t) accuracy that can
be improved through Picard or predictor-corrector iterations.

Implementation of an overlapped mesh scheme requires interpolating the fluid velocity and any
scalars, such as temperature, at each timestep, and multiple times per step if correction iterations
are added. Additionally, changes to the mesh during the simulation, such as for moving machinery,
requires recomputing the interpolation points at every time step. Thus, using overlapped meshes
requires scalable interpolation routines.

7

Algorithm 5 Particle Update with 3rd order time-stepping
1: findpts(~x, procs, el, r)
2: migrate(~x, procs, el, r, ~u)
3: findpts eval(~u:,0, el, r,fluid velocity)
4: for p ∈ particles do
5: ~xp ← ~xp + ∆t(c1~up,0 + c2~up,1 + c3~up,2)
6: ~up,2 ← ~up,1; ~up,1 ← ~up,0
7: Check boundary conditions
8: end for

The overset grid support requires resolution of several other technical issues relating to mass
conservation, timestepping, and parallelism which have been addressed for the SEM in [15, 16] and
in earlier efforts by [2, 17]. For a GPU-based NSE solver, however, it is also critical to have fast
interpolation on the GPU, such as provided by the routines described in the preceeding section.
Figure 1 illustrates results for an initial 3D test case running on a single node of Summit with a
rotating cylindrical mesh embedded in a fixed outer mesh. This case is an exact Navier-Stokes
solution due to [18]. The two subdomains run as separate MPI processes.

5 Particle Tracking

Tracking particles within a fluid flow occurs in a number of use cases. Of recent importance is the
simulation of aerosolized COVID-19 particles [19, 20]. Other applications include river sediment
[21] and industrial processes [22]. Furthermore, tracer particles can be used to visualize the fluid’s
movement [23]. Our tests focused on Lagrange tracer particles where the particle velocity is
identical to the surrounding fluid velocity, but this work can be easily extended to inertial particles.
Figures 2–3 shows examples of visualizing the fluid with tracer particles.

5.1 Particle Migration

Particles can be easily simulated with an explicit time-stepping scheme, such as Adam-Bashford,
with the velocity computed at the particle’s old position. We summarize the particle update steps
in Algorithm 5. Our particle boundary conditions were implemented on a case-by-case basis for
simplicity’s sake.

One notable step is that of particle migration which exchanges particle ownership so that each
process owns the particles that are present in its elements. This alleviates all communication in the
following findpts eval calls. Furthermore, particle will usually spent multiple timesteps within a
single element, reducing the communication needed for subsequent findpts calls and migrations. The
desired ownership of a particle is already computed during findpts, so implementing the migration is
just a matter of doing an all-to-all exchange on the particles needing migration.

5.2 Performance

Our performance tests focus on the gabls-part example, which is based on the first case of the
GEWEX atmospheric boundary layer study (GABLS) as described by [24]. This problem simulates

8

Figure 2: Examples of tracer particles for an atmospheric boundary layer simulation and a pebble
bed simulation with 146 pebbles.

Figure 3: Examples of tracer particles for a pebble bed simulation with 44 257 pebbles.

9

Figure 4: Comparison of the implemented optimizations with 643 × 83 ≈ 134× 106 grid points
distributed over 60 GPUs. Solid lines show time to simulate particles in addition to the cost to
simulate the fluid.

a region of 400 m× 400 m× 400 m with periodic boundary conditions on the horizontal axes, vertical
velocity of zero lower boundaries, and a free-slip boundary condition on the upper boundary with
a vertical velocity of zero and a horizontal velocity of 8 m/s in the east-west direction. A Coriolis
effect corresponding to the latitude 73◦N was applied.

Both of the following tests use a mesh of 643 cubic elements in each direction with degree
8 polynomials within each element. The problem was then run with 10 nodes of Summit (60
GPUs). The points were evenly distributed in each dimension and assigned to processes in a round
robin fashion. Periodic boundary conditions were applied to the particles in the x and z directions
(following the velocity BCs). The tests were run for 2000 steps with all particles being created on
the first step.

We first tested the performance of various combinations of optimizations, including

• moving findpts local to OCCA,

• moving findpts eval local to OCCA, and

• enabling particle migration.

Figure 4 shows the wall clock time per timestep in excess of the time to simulate the fluid without
any particles. As can be seen in the figure, porting both routines provide significantly more benefit
that either routine on its own. The combination of all three optimizations provides a 35× speedup
in the particle overhead for 103 particles, and a 100× increase in the number of particles with
the particle overhead is limited to the cost of the fluid solve. These optimizations put the cost of
simulating a particle on par with the cost to simulating just a few fluid grid points; furthermore, it
allows for the simulation of over a hundred million of particles across 60 processes.

Next we tested the performance of various components with results shown in Table 1. The
three components that stand out are the host findpts, the host findpts eval, and copying to velocity
to the host; switching to device provides dramatic savings in the first two, and completely removes

10

Table 1: Cost in ms per timestep of various components in particle tracking. Nested timings are
included in their parent times.

Findpts implementation GPU CPU
Migration Yes No Yes No
particle count 1003 1503 2003 1003 1503 2003 1003 1503 1003 1503

Fluid Solve 98.2 98.1 98.5 99.2 98.2 107.5 97.9 98.7 101.2 100.1
Particle Creation 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Particle Update 3.6 8.5 19.1 18.6 60.8 146.1 277.0 910.2 288.3 953.9
- Copy fluid vel. to host - - - - - - 15.7 13.9 16.4 15.5
- findpts 2.7 6.4 14.3 8.9 29.0 69.1 225.3 746.5 234.1 775.9
- - Memcpy 0.4 0.7 1.2 0.8 1.8 4.2 - - - -
- - Kernel 1.8 4.9 11.3 1.9 6.4 14.6 219.7 735.7 220.4 734.7
- migration 0.1 0.1 0.3 - - - 0.1 0.2 - -
- findpts eval 0.6 1.3 3.1 9.4 31.0 74.9 49.7 158.5 54.0 177.1
- - Memcpy 0.2 0.4 0.9 0.3 1.0 2.0 - - - -
- - Kernel 0.5 0.9 2.2 0.3 0.8 1.4 49.6 158.5 43.2 141.9
- Advance position 0.2 0.5 1.2 0.2 0.5 1.3 0.2 0.5 0.1 0.5
- Barrier 0.0 0.1 0.2 0.1 0.3 0.8 1.8 4.4 0.1 0.3

the last. With the device implementation, particle migration is able to provide significant additional
improvements in the communication, resulting in, e.g., 70 % of the total update time being spent in
the computational kernel for 2003 particles instead of merely 11 %.

There are a few points to note when extrapolating these results to other cases. First, the
mesh is linear and uniformly sized, meaning that findpts will require only one Newton interation to
converge. Second, the particles are distributed uniformly; in many real applications the particle
distribution will induce load imbalance, which reduces performance. Third, particles were created
once at the beginning of the simulation. High particle turnover will produce extra communication
in the findpts and migration steps, as most particles will require migration on their first timestep.
Finally, in the fluid simulation the velocity, pressure, and temperature solves converged within one
iteration on almost every timestep. So, these case is an easy problem for both the particle tracking
and the fluid solve.

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Science,
under contract DE-AC02-06CH11357 and by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science and the
National Nuclear Security Administration) responsible for the planning and preparation of a capable
exascale ecosystem, including software, applications, hardware, advanced system engineering and
early testbed platforms, in support of the nation’s exascale computing imperative.

The research used resources at the Oak Ridge Leadership Computing Facility at Oak Ridge
National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy
under Contract DE-AC05-00OR22725 and at the Argonne Leadership Computing Facility, under

11

Contract DE-AC02-06CH11357.

References

[1] G. Chesshire and W. Henshaw. Composite overlapping meshes for the solution of partial
differential equations. J. Comput. Phys., 90:1–64, 1990.

[2] B.E. Merrill, Y.T. Peet, P.F. Fischer, and J.W. Lottes. A spectrally accurate method for
overlapping grid solution of incompressible Navier-Stokes equations. J. Comput. Phys., 307:60–
93, 2016.

[3] Ketan Mittal, Som Dutta, and Paul Fischer. Nonconforming schwarz-spectral element methods
for incompressible flow. Computers & Fluids, 191:104237, 2019.

[4] Paul Fischer, Stefan Kerkemeier, Misun Min, Yu-Hsiang Lan, Malachi Phillips, Thilina Rath-
nayake, Elia Merzari, Ananias Tomboulides, Ali Karakus, Noel Chalmers, and Tim Warburton.
Nekrs, a gpu-accelerated spectral element navier-stokes solver. CoRR, abs/2104.05829, 2021.

[5] A.T. Patera. A spectral element method for fluid dynamics : laminar flow in a channel
expansion. J. Comput. Phys., 54:468–488, 1984.

[6] J. W. Lottes and P. F. Fischer. Hybrid multigrid/Schwarz algorithms for the spectral element
method. J. Sci. Comput., 24:45–78, 2005.

[7] Martin Kronbichler and Karl Ljungkvist. Multigrid for matrix-free high-order finite element
computations on graphics processors. ACM Transactions on Parallel Computing, 6(1):1–32, 05
2019.

[8] M.O. Deville, P.F. Fischer, and E.H. Mund. High-order methods for incompressible fluid flow.
Cambridge University Press, Cambridge, 2002.

[9] S.A. Orszag. Spectral methods for problems in complex geometry. J. Comput. Phys., 37:70–92,
1980.

[10] Paul Fischer, Misun Min, Thilina Rathnayake, Som Dutta, Tzanio Kolev, Veselin Dobrev,
Jean-Sylvain Camier, Martin Kronbichler, Tim Warburton, Kasia Swirydowicz, and Jed Brown.
Scalability of high-performance PDE solvers. The International Journal of High Performance
Computing Applications, 34(5):562–586, 2020.

[11] David S Medina, Amik St-Cyr, and Tim Warburton. OCCA: A unified approach to multi-
threading languages. preprint arXiv:1403.0968, 2014.

[12] N. Chalmers, A. Karakus, A. P. Austin, K. Swirydowicz, and T. Warburton. libParanumal,
2020.

[13] gslib: Gather-scatter library, 2020.

[14] Awais Khan, Hyogi Sim, Sudharshan S. Vazhkudai, Ali R. Butt, and Youngjae Kim. An
analysis of system balance and architectural trends based on Top500 supercomputers. In The
International Conference on High Performance Computing in Asia-Pacific Region, HPC Asia
2021, pages 11–22, New York, NY, USA, January 2021. Association for Computing Machinery.

12

[15] Ketan Mittal, Som Dutta, and Paul Fischer. Nonconforming Schwarz-spectral element methods
for incompressible flow. Computers and Fluids, 191, 2019.

[16] Ketan Mittal, Som Dutta, and Paul Fischer. Multirate time-stepping for the incompressible
Navier-Stokes equations in overlapping grids. jcp, 437:110335, 2020.

[17] B.E. Merrill and Y.T. Peet. Moving overlapping grid methodology of spectral accuracy for
incompressible flow solutions around rigid bodies in motion. J. Comput. Phys., 390:121–151,
2019.

[18] O. Walsh. Eddy solutions of the navier-stokes equations. In J.G. Heywood, K. Masuda,
R. Rautmann, and V.A. Solonikkov, editors, The NSE II-Theory and Numerical Methods, pages
306–309. Springer, 1992.

[19] Mahshid Mirzaie, Esmail Lakzian, Afrasyab Khan, Majid Ebrahimi Warkiani, Omid Mahian,
and Goodarz Ahmadi. COVID-19 spread in a classroom equipped with partition – A CFD
approach. Journal of Hazardous Materials, 420:126587, October 2021.

[20] Jana Wedel, Paul Steinmann, Mitja Štrakl, Matjaž Hriberšek, and Jure Ravnik. Can CFD
establish a connection to a milder COVID-19 disease in younger people? Aerosol deposition
in lungs of different age groups based on Lagrangian particle tracking in turbulent flow.
Computational Mechanics, 67(5):1497–1513, May 2021.

[21] Som Dutta, Mark W. Van Moer, Paul Fischer, and Marcelo H. Garcia. Visualization of the
Bulle-Effect at River Bifurcations. In Proceedings of the Practice and Experience on Advanced
Research Computing, PEARC ’18, pages 1–4, New York, NY, USA, July 2018. Association for
Computing Machinery.

[22] Susana Torno, Javier Toraño, and Inmaculada Álvarez-Fernández. Simultaneous evaluation of
wind flow and dust emissions from conveyor belts using computational fluid dynamics (CFD)
modelling and experimental measurements. Powder Technology, 373:310–322, August 2020.

[23] Tamay M. Özgökmen and Paul F. Fischer. CFD application to oceanic mixed layer sampling
with Lagrangian platforms. International Journal of Computational Fluid Dynamics, 26(6-
8):337–348, July 2012.

[24] Robert J Beare, Malcolm K Macvean, Albert AM Holtslag, Joan Cuxart, Igor Esau, Jean-
Christophe Golaz, Maria A Jimenez, Marat Khairoutdinov, Branko Kosovic, David Lewellen,
et al. An intercomparison of large-eddy simulations of the stable boundary layer. Boundary-
Layer Meteorology, 118(2):247–272, 2006.

13

Mathematics and Computer Science
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 240
Lemont, IL 60439

www.anl.gov

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

	Executive Summary
	Introduction
	Formulation
	Interpolation Algorithm
	findpts
	findpts_eval
	Lagrange Cardinal Polynomials

	Applications: Overlapping meshes
	Particle Tracking
	Particle Migration
	Performance

	Acknowledgments
	References

